如何让LEDbob.com光源在照明领域发挥更大的作用

  bob体育新闻     |      2024-03-28 11:13

  ,但还是出现了不少问题,主要是能效、可靠性、光色质量以及成本等问题。有关能效和光色质量所涉及的内容很丰富,比如视觉舒适度、智能化调光控制等,在此我们暂不描述。本文将讨论急需解决的主要技术问题,归结为“三高一低”,即高光效、高显色性、高可靠和低成本的技术问题,实现低成本其实质上也是技术问题。解决这四大技术问题,需要在半导体照明产业链各个环节上采取一系列措施,比如采用新技术、新结构、新工艺、新材料等,这里只提及应该采取的技术路线和方向,希望对

  半导体照明的光效,或者说能效,是节能效果的重要指标。目前LED器件光效产业化水平可达120~140lm/W,作成照明灯具总的能效可大于100lm/W。这还是不高,节能效果不明显,离半导体器件光效理论值250lm/W还有很大距离。真正要做到高光效,要从产业链各个环节上解决相关的技术问题,主要是提高内量子效率、外量子效率、封装出光效率和灯具效率,本文将针对外延、芯片,封装,灯具等几个环节要解决的技术问题探讨。

  采用纳米级图型衬底、“取向型”图型衬底或非极性、半极性衬底生长GaN,减少位错和缺陷密度及极性场影响,提高内量子效率[1]。

  采用HVPE(氢化物液相外延)在Al2O3蓝宝石衬底上生长GaN,作为混合同质衬底GaN/Al2O3,在此基础上外延生长GaN,可极大地降低位错密度达106~107cm-2,并较大地提高内量子效率。日亚、Cree及我国北大均在研发之中[2]。

  控制In组分的变化方式和变化量、优化量子阱结构提高电子和空穴交叠几率,增加幅射复合几率以及调节非平衡载流子的输运等,提高内量子效率。

  采用新结构要求芯片六面出光,在芯片界面上采用新技术进行多种表面粗化方式,减少光子在芯片界面上反射几率,bob.com并增加表面透光率,以提高芯片的外量子效率。

  荧光粉的光激发效率目前还不高,黄粉可达70%左右,红粉和绿粉的效率较低,有待进一步提高。另外,荧光粉的涂覆工艺非常重要,有报道称在芯片表面均匀涂复60微米厚度的荧光粉,激发效率较高。

  当前半导体照明的光源采用各种形式COB封装,提高COB封装的出光效率是当务之急,有报道称,采用第二代(有的称第三代)COB矩阵式结构封装,其光效可达120lm/W以上。如果采用倒装芯片和六面发光体进行全反射的结构,光效可达160lm/W以上。

  结温为25℃时的发光量设为100%,当结温上升至60℃时其发光量只有90%,当上升至140℃时只有70%,所以在封装时要加大散热措施,保持较低结温,维持较高的发光效率。

  不同LED灯具的效率相差很大,一般LED灯具效率大于80%,有一部分可大于90%。要根据LED光源的特点以及不同的应用场合,对灯具进行精细的二次光学设计,也要考虑灯具散热和眩光问题,提高LED灯具的取光效率。

  白光LED的光色质量内容很多,包括色温、显色性、光色保真度、光色自然度、色调识别度、视觉舒适度等[3]。美国SSL计划提出,LED照明产品的光谱分布要达到类似太阳光的光谱分布。要达到上述这些要求是很难的,要做很多基础研究工作,将来一定会实现。这里只讨论目前急需解决的色温和显色性问题。美国能源之星标准规定,室内照明的显色指数CRI≥80,但在一些高端的应用场合要求CRI≥90。制作高显色性LED光源,会损失较多的光效,所以在设计时要照顾这两方面因素。

  在此有必要说明一下有关显色指数CRI的评价问题[4],CIE(TC1-62)技术报告177的结论:“CIE的CRI不适合用于表示白光LED光源的显色范围”。现在有很多种针对CRI定标提出的修正办法,如CQS色品质度、GAI全色域指数、RF夫勒特利指数、CPI颜色偏爱指数、CDI色分辨指数等,目前CIE要采用哪一种修正尚未定论。美国NIST(国家标准研究院)提出采用CQS来评价光源颜色的质量,将测试样品扩大到15种,包含部分高色饱和度的样品,这样就好得多,很多人给予认同。要提高显色性,原则上要考虑RGB三基色组合来实现,目前有三种办法。

  LED光源采用LED蓝光芯片加铝酸盐黄粉和氮化物红粉、绿粉组合成LED白光,其显色指数CRI可达80~90。据有关报道,如采用RGBY荧光粉有效组合,其CRI可达98。

  采用RGB多芯片有效组合的LED白光,显色指数CRI也可达80~90,可能由于驱动方式和成本等因素,目前较少应用。

  LED光源采用蓝光芯片加铝酸盐黄粉加红色芯片,有效组合LED白光,其显色指数可达80以上,光效较高,成本尚可,是目前普遍采用的组合方式。

  LED器件及光源(灯具)的可靠性、失效率、寿命等指标,在实际应用中存在不同的理解和描述,有必要作些解释。

  可靠性是指产品在规定条件下和规定时间内,完成规定功能的能力[5]。LED失效类别主要有严重失效(指关键参数改变至LED不亮)和参数失效(指光电参数由初始值变化至超一定限度)。失效曲线包括早期失效(在使用初期失效率高,随后迅速下降)、偶然失效(失效率低,但很稳定)和耗损失效(随使用时间愈长,耗损失效不断上升)。

  寿命是产品可靠性的表征值。由于产品所规定各种寿命的含义不同,容易造成混淆,在此作具体描述。有关寿命的描述有很多种,这里列举10种不同含义的寿命,即:寿命、平均寿命、中位寿命、特征寿命、预期寿命、可靠寿命、工作寿命、光通维持寿命、平均无故障工作时间和平均失效前工作时间等。其中LED寿命的常用表述有:

  寿命:一般指统计平均值,对大量元器件而言,LED器件的寿命就是采用这种描述的含义。

  中位寿命:有50%的灯具(光源)其光通量下降至某一定值(如初始值的70%)的时间定为中位寿命L70/B50,部分照明灯具的标准是采用中位寿命表述。

  光通维持寿命:指发光器件(LED)或灯具(光源)的光通量下降至某一定值的时间,称为光通维持寿命(此时不考虑色参数的变化)。

  EPA(美国国家环境保护局)公布:能源之星灯具V1.0技术规范“技术中立”,规定匹配灯具寿命为1万小时即额定光通维持率寿命,集成LED灯具要求1.5万~2.5万小时。

  能源之星标准提出LED光源(灯具)在加额定电流6000小时后,测量产品的光通维持率,并推算产品的工作寿命(指有效的工作时间)同时要求在全寿命期内色空间均匀度在CIE1976u′v′图中0.006以内。这个办法得到行业内普遍认同,但具体操作很难,因为需要花250天以上的试验时间,在企业中很难执行。

  提高LED可靠性是行内共同努力的目标。有关影响LED产品可靠性的各种因素,如芯片制造、封装、热阻、散热等,以前做了较详细描述[6],在此希望企业对LED产品在执行全面质量控制的基础上,再作如下两点要求:

  目前在实际应用中,经常出现产品失效,有的甚至很严重。希望相关单位能通过各种试验,找出失效的原因,并采取有效的工艺筛选办法,剔除早期失效和偶然失效的不良产品,在使用中尽可能减少失效率。

  希望相关企业对典型的LED产品进行长时间老化试验(或加速老化试验),通过分析找出产品耗损失效的原因,并在工艺、选材等各方面加以改进,延长耗损的时间,这也是提高LED寿命的有效办法。